61 research outputs found

    UCDFormer: Unsupervised Change Detection Using a Transformer-driven Image Translation

    Full text link
    Change detection (CD) by comparing two bi-temporal images is a crucial task in remote sensing. With the advantages of requiring no cumbersome labeled change information, unsupervised CD has attracted extensive attention in the community. However, existing unsupervised CD approaches rarely consider the seasonal and style differences incurred by the illumination and atmospheric conditions in multi-temporal images. To this end, we propose a change detection with domain shift setting for remote sensing images. Furthermore, we present a novel unsupervised CD method using a light-weight transformer, called UCDFormer. Specifically, a transformer-driven image translation composed of a light-weight transformer and a domain-specific affinity weight is first proposed to mitigate domain shift between two images with real-time efficiency. After image translation, we can generate the difference map between the translated before-event image and the original after-event image. Then, a novel reliable pixel extraction module is proposed to select significantly changed/unchanged pixel positions by fusing the pseudo change maps of fuzzy c-means clustering and adaptive threshold. Finally, a binary change map is obtained based on these selected pixel pairs and a binary classifier. Experimental results on different unsupervised CD tasks with seasonal and style changes demonstrate the effectiveness of the proposed UCDFormer. For example, compared with several other related methods, UCDFormer improves performance on the Kappa coefficient by more than 12\%. In addition, UCDFormer achieves excellent performance for earthquake-induced landslide detection when considering large-scale applications. The code is available at \url{https://github.com/zhu-xlab/UCDFormer}Comment: 16 pages, 7 figures, IEEE Transactions on Geoscience and Remote Sensin

    JEC-QA: A Legal-Domain Question Answering Dataset

    Full text link
    We present JEC-QA, the largest question answering dataset in the legal domain, collected from the National Judicial Examination of China. The examination is a comprehensive evaluation of professional skills for legal practitioners. College students are required to pass the examination to be certified as a lawyer or a judge. The dataset is challenging for existing question answering methods, because both retrieving relevant materials and answering questions require the ability of logic reasoning. Due to the high demand of multiple reasoning abilities to answer legal questions, the state-of-the-art models can only achieve about 28% accuracy on JEC-QA, while skilled humans and unskilled humans can reach 81% and 64% accuracy respectively, which indicates a huge gap between humans and machines on this task. We will release JEC-QA and our baselines to help improve the reasoning ability of machine comprehension models. You can access the dataset from http://jecqa.thunlp.org/.Comment: 9 pages, 2 figures, 10 tables, accepted by AAAI202

    MUSER: A Multi-View Similar Case Retrieval Dataset

    Full text link
    Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness. However, existing SCR datasets only focus on the fact description section when judging the similarity between cases, ignoring other valuable sections (e.g., the court's opinion) that can provide insightful reasoning process behind. Furthermore, the case similarities are typically measured solely by the textual semantics of the fact descriptions, which may fail to capture the full complexity of legal cases from the perspective of legal knowledge. In this work, we present MUSER, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations. Specifically, we select three perspectives (legal fact, dispute focus, and law statutory) and build a comprehensive and structured label schema of legal elements for each of them, to enable accurate and knowledgeable evaluation of case similarities. The constructed dataset originates from Chinese civil cases and contains 100 query cases and 4,024 candidate cases. We implement several text classification algorithms for legal element prediction and various retrieval methods for retrieving similar cases on MUSER. The experimental results indicate that incorporating legal elements can benefit the performance of SCR models, but further efforts are still required to address the remaining challenges posed by MUSER. The source code and dataset are released at https://github.com/THUlawtech/MUSER.Comment: Accepted by CIKM 2023 Resource Trac

    Denoising Relation Extraction from Document-level Distant Supervision

    Full text link
    Distant supervision (DS) has been widely used to generate auto-labeled data for sentence-level relation extraction (RE), which improves RE performance. However, the existing success of DS cannot be directly transferred to the more challenging document-level relation extraction (DocRE), since the inherent noise in DS may be even multiplied in document level and significantly harm the performance of RE. To address this challenge, we propose a novel pre-trained model for DocRE, which denoises the document-level DS data via multiple pre-training tasks. Experimental results on the large-scale DocRE benchmark show that our model can capture useful information from noisy DS data and achieve promising results.Comment: EMNLP 2020 short pape

    Emergent Modularity in Pre-trained Transformers

    Full text link
    This work examines the presence of modularity in pre-trained Transformers, a feature commonly found in human brains and thought to be vital for general intelligence. In analogy to human brains, we consider two main characteristics of modularity: (1) functional specialization of neurons: we evaluate whether each neuron is mainly specialized in a certain function, and find that the answer is yes. (2) function-based neuron grouping: we explore finding a structure that groups neurons into modules by function, and each module works for its corresponding function. Given the enormous amount of possible structures, we focus on Mixture-of-Experts as a promising candidate, which partitions neurons into experts and usually activates different experts for different inputs. Experimental results show that there are functional experts, where clustered are the neurons specialized in a certain function. Moreover, perturbing the activations of functional experts significantly affects the corresponding function. Finally, we study how modularity emerges during pre-training, and find that the modular structure is stabilized at the early stage, which is faster than neuron stabilization. It suggests that Transformers first construct the modular structure and then learn fine-grained neuron functions. Our code and data are available at https://github.com/THUNLP/modularity-analysis.Comment: Findings of ACL 202
    corecore